Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2025
-
Abstract The structure and dynamics of the cell nucleus regulate nearly every facet of the cell. Changes in nuclear shape limit cell motility and gene expression. Although the nucleus is generally seen as the stiffest organelle in the cell, cells can nevertheless deform the nucleus to large strains by small mechanical stresses. Here, we show that the mechanical response of the cell nucleus exhibits active fluidization that is driven by the BRG 1 motor of the SWI/SNF/BAF chromatin-remodeling complex. Atomic force microscopy measurements show that the nucleus alters stiffness in response to the cell substrate stiffness, which is retained after the nucleus is isolated and that the work of nuclear compression is mostly dissipated rather than elastically stored. Inhibiting BRG 1 stiffens the nucleus and eliminates dissipation and nuclear remodeling both in isolated nuclei and in intact cells. These findings demonstrate a novel link between nuclear motor activity and global nuclear mechanics.more » « less
-
Colloidal particles with mobile binding molecules constitute a powerful platform for probing the physics of self-assembly. Binding molecules are free to diffuse and rearrange on the surface, giving rise to spontaneous control over the number of droplet–droplet bonds, i.e. , valence, as a function of the concentration of binders. This type of valence control has been realized experimentally by tuning the interaction strength between DNA-coated emulsion droplets. Optimizing for valence two yields droplet polymer chains, termed ‘colloidomers’, which have recently been used to probe the physics of folding. To understand the underlying self-assembly mechanisms, here we present a coarse-grained molecular dynamics (CGMD) model to study the self-assembly of this class of systems using explicit representations of mobile binding sites . We explore how valence of assembled structures can be tuned through kinetic control in the strong binding limit. More specifically, we optimize experimental control parameters to obtain the highest yield of long linear colloidomer chains. Subsequently tuning the dynamics of binding and unbinding via a temperature-dependent model allows us to observe a heptamer chain collapse into all possible rigid structures, in good agreement with recent folding experiments. Our CGMD platform and dynamic bonding model (implemented as an open-source custom plugin to HOOMD-Blue) reveal the molecular features governing the binding patch size and valence control, and opens the study of pathways in colloidomer folding. This model can therefore guide programmable design in experiments.more » « less
-
Just like atoms combine into molecules, colloids can self-organize into predetermined structures according to a set of design principles. Controlling valence—the number of interparticle bonds—is a prerequisite for the assembly of complex architectures. The assembly can be directed via solid “patchy” particles with prescribed geometries to make, for example, a colloidal diamond. We demonstrate here that the nanoscale ordering of individual molecular linkers can combine to program the structure of microscale assemblies. Specifically, we experimentally show that covering initially isotropic microdroplets withNmobile DNA linkers results in spontaneous and reversible self-organization of the DNA intoZ(N) binding patches, selecting a predictable valence. We understand this valence thermodynamically, deriving a free energy functional for droplet–droplet adhesion that accurately predicts the equilibrium size of and molecular organization within patches, as well as the observed valence transitions withN. Thus, microscopic self-organization can be programmed by choosing the molecular properties and concentration of binders. These results are widely applicable to the assembly of any particle with mobile linkers, such as functionalized liposomes or protein interactions in cell–cell adhesion.more » « less
An official website of the United States government
